Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 404
Filtrar
1.
Biosensors (Basel) ; 14(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38667187

RESUMO

Antimicrobial-resistant (AMR) bacteria pose a significant global health threat, and bacteria that produce New Delhi metallo-ß-lactamase (NDM) are particularly concerning due to their resistance to most ß-lactam antibiotics, including carbapenems. The emergence and spread of NDM-producing genes in food-producing animals highlight the need for a fast and accurate method for detecting AMR bacteria. We therefore propose a PCR-coupled CRISPR/Cas12a-based fluorescence assay that can detect NDM-producing genes (blaNDM) in bacteria. Thanks to its designed gRNA, this CRISPR/Cas12a system was able to simultaneously cleave PCR amplicons and ssDNA-FQ reporters, generating fluorescence signals. Our method was found to be highly specific when tested against other foodborne pathogens that do not carry blaNDM and also demonstrated an excellent capability to distinguish single-nucleotide polymorphism. In the case of blaNDM-1 carrying E. coli, the assay performed exceptionally well, with a detection limit of 2.7 × 100 CFU/mL: 100 times better than conventional PCR with gel electrophoresis. Moreover, the developed assay detected AMR bacteria in food samples and exhibited enhanced performance compared to previously published real-time PCR assays. Thus, this novel PCR-coupled CRISPR/Cas12a-based fluorescence assay has considerable potential to improve current approaches to AMR gene detection and thereby contribute to mitigating the global threat of AMR.


Assuntos
Proteínas de Bactérias , Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Carbapenêmicos , Endodesoxirribonucleases , beta-Lactamases , Carbapenêmicos/farmacologia , beta-Lactamases/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriaceae/genética , Enterobacteriaceae/efeitos dos fármacos , Antibacterianos/farmacologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Técnicas Biossensoriais , Farmacorresistência Bacteriana/genética
2.
Metabolites ; 14(4)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38668338

RESUMO

The irrational use of antibiotics has favored the emergence of resistant bacteria, posing a serious threat to global health. To counteract antibiotic resistance, this research seeks to identify novel antimicrobials derived from essential oils that operate through several mechanisms. It aims to evaluate the quality and composition of essential oils from Origanum compactum and Origanum elongatum; test their antimicrobial activity against various strains; explore their synergies with commercial antibiotics; predict the efficacy, toxicity, and stability of compounds; and understand their molecular interactions through docking and dynamic simulations. The essential oils were extracted via hydrodistillation from the flowering tops of oregano in the Middle Atlas Mountains in Morocco. Gas chromatography combined with mass spectrometry (GC-MS) was used to examine their composition. Nine common antibiotics were chosen and tested alone or in combination with essential oils to discover synergistic effects against clinically important and resistant bacterial strains. A comprehensive in silico study was conducted, involving molecular docking and molecular dynamics simulations (MD). O. elongatum oil includes borneol (8.58%), p-cymene (42.56%), thymol (28.43%), and carvacrol (30.89%), whereas O. compactum oil is mostly composed of γ-terpinene (22.89%), p-cymene (15.84%), thymol (10.21%), and (E)-caryophyllene (3.63%). With O. compactum proving to be the most potent, these essential oils showed antibacterial action against both Gram-positive and Gram-negative bacteria. Certain antibiotics, including ciprofloxacin, ceftriaxone, amoxicillin, and ampicillin, have been shown to elicit synergistic effects. To fight resistant bacteria, the essential oils of O. compactum and O. elongatum, particularly those high in thymol and (E)-caryophyllene, seem promising when combined with antibiotics. These synergistic effects could result from their ability to target the same bacterial proteins or facilitate access to target sites, as suggested by molecular docking simulations. Molecular dynamics simulations validated the stability of the examined protein-ligand complexes, emphasizing the propensity of substances like thymol and (E)-caryophyllene for particular target proteins, opening the door to potentially effective new therapeutic approaches against pathogens resistant to multiple drugs.

3.
Zhongguo Zhong Yao Za Zhi ; 49(3): 653-660, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621869

RESUMO

Quorum sensing system regulates the expression of genes related to bacterial growth, metabolism and other behaviors by sensing bacterial density, and controls the unified action of the entire bacterial population. This mechanism can ensure the normal secretion of bacterial metabolites and the stability of the biofilm microenvironment, providing protection for the formation of biofilms and the normal growth and reproduction of bacteria. Traditional Chinese medicine, capable of quorum sensing inhibition, can inhibit the formation of bacterial biofilms, reduce bacterial resistance, and enhance the anti-infection ability of antibiotics when combined with antibiotics. In recent years, the combination of traditional Chinese and Western medicine in the treatment of drug-resistant bacterial infections has become a research hotspot. Starting with the associations between quorum sensing, biofilm and drug-resistant bacteria, this paper reviews the relevant studies about the combined application of traditional Chinese medicines as quorum sensing inhibitors with antibiotics in the treatment of drug-resistant bacteria. This review is expected to provide ideas for the development of new clinical treatment methods and novel anti-infection drugs.


Assuntos
Infecções Bacterianas , Percepção de Quorum , Humanos , Percepção de Quorum/genética , Medicina Tradicional Chinesa , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias/genética , Biofilmes , Infecções Bacterianas/tratamento farmacológico
4.
Adv Healthc Mater ; : e2304657, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607802

RESUMO

The pervasive employment of antibiotics has engendered the advent of drug-resistant bacteria, imperiling the well-being and health of both humans and animals. Infections precipitated by such multi-resistant bacteria, especially those induced by methicillin-resistant Staphylococcus aureus (MRSA), pervade hospital settings, constituting a grave menace to patient vitality. Antimicrobial peptides (AMPs) have garnered considerable attention as a potent countermeasure against multidrug resistant bacteria. In preceding research endeavors, an insect-derived antimicrobial peptide is identified that, while possessing antimicrobial attributes, manifested suboptimal efficacy against drug-resistant Gram-positive bacteria. To ameliorate this issue, this work enhances the antimicrobial capabilities of the initial ß-hairpin AMPs by substituting the structural sequence of the original AMPs with variant lengths of hydrophobic amino acid-hydrophilic amino acid repeat units. Throughout this endeavor, this work has identified a number of peptides that possess highly effective antibacterial characteristics against a wide range of bacteria. Additionally, some of these peptides have the ability to self-assemble into nanofibers, which then build networks in a distinctive manner to capture bacteria. Consequently, they represent prospective antibiotic alternatives for addressing wound infections engendered by drug-resistant bacteria.

5.
ACS Appl Bio Mater ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651365

RESUMO

Bacterial invasion hinders the healing process of wound, leading to the formation of chronic infected wound; meanwhile, the misuse of antibiotics has resulted in the emergence of numerous drug-resistant bacteria. The application of conventional antimicrobial methods and wound treatment techniques is not appropriate for wound dressings. In this paper, quaternized poly(vinyl alcohol) (QPVA) and pomegranate-like copper uniformly doped polydopamine nanoparticles (PDA@Cu) were introduced into a gelatin-oxidized carboxymethyl cellulose system to form a multicomponent synergistic antibacterial hydrogel (GOQ3P3). Polydopamine improves the biocompatibility and prevents the detachment of Cu nanoparticles. It can achieve synergistic antibacterial effects through quaternary ammonium salt-inorganic nanoparticle photothermal treatment under 808 nm near-infrared (NIR) irradiation. It exhibits highly efficient and rapid bactericidal properties against Escherichia coli, Staphylococcus aureus, and MRSA (methicillin-resistant Staphylococcus aureus) with an antibacterial rate close to 100%. The gel scaffold composed of macromolecules gives the hydrogel excellent mechanical properties, adhesive capabilities, self-healing characteristics, biocompatibility, and pH degradation and promotes cell adhesion and migration. In a full-thickness wound healing model infected with MRSA, GOQ3P3 controls inflammatory responses, accelerates collagen deposition, promotes angiogenesis, and enhances wound closure in the wound healing cascade reaction. This study provides a feasible strategy for constructing dressings targeting chronic infection wounds caused by drug-resistant bacteria.

6.
Sci Rep ; 14(1): 9383, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654061

RESUMO

Brazil is recognized for its biodiversity and the genetic variability of its organisms. This genetic variability becomes even more valuable when it is properly documented and accessible. Understanding bacterial diversity through molecular characterization is necessary as it can improve patient treatment, reduce the length of hospital stays and the selection of resistant bacteria, and generate data for health and epidemiological surveillance. In this sense, in this study, we aimed to understand the biodiversity and molecular epidemiology of carbapenem-resistant bacteria in clinical samples recovered in the state of Rondônia, located in the Southwest Amazon region. Retrospective data from the Central Public Health Laboratories (LACEN/RO) between 2018 and 2021 were analysed using the Laboratory Environment Manager Platform (GAL). Seventy-two species with carbapenem resistance profiles were identified, of which 25 species carried at least one gene encoding carbapenemases of classes A (blaKPC-like), B (blaNDM-like, blaSPM-like or blaVIM-like) and D (blaOXA-23-like, blaOXA-24-like, blaOXA-48-like, blaOXA-58-like or blaOXA-143-like), among which we will highlight Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, Serratia marcescens, and Providencia spp. With these results, we hope to contribute to the field by providing epidemiological molecular data for state surveillance on bacterial resistance and assisting in public policy decision-making.


Assuntos
Biodiversidade , Carbapenêmicos , beta-Lactamases , Brasil , Humanos , Carbapenêmicos/farmacologia , beta-Lactamases/genética , Estudos Retrospectivos , Antibacterianos/farmacologia , Acinetobacter baumannii/genética , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/isolamento & purificação , Proteínas de Bactérias/genética , Testes de Sensibilidade Microbiana , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/classificação , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/isolamento & purificação , Farmacorresistência Bacteriana/genética , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação
7.
Adv Sci (Weinh) ; : e2307969, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38482752

RESUMO

Non-antibiotic strategies are desperately needed to treat post-traumatic osteomyelitis (PTO) due to the emergence of superbugs, complex inflammatory microenvironments, and greatly enriched biofilms. Previously, growing evidence indicated that quorum sensing (QS), a chemical communication signal among bacterial cells, can accelerate resistance under evolutionary pressure. This study aims to develop a medical dressing to treat PTO by inhibiting QS and regulating the inflammatory microenvironment, which includes severe oxidative stress and acid abscesses, through a reactive oxygen species (ROS)-responsive bond between N1- (4-borobenzoyl)-N3-(4-borobenzoyl)-the N1, the N1, N3, N3-tetramethylpropane-1,3-diamine (TSPBA) and polyvinyl alcohol (PVA), and the amino side chain of hyperbranched polylysine (HBPL). Physically enclosed QS inhibitors subsequently exerted the antibacterial effects. This hydrogel can scavenge hydrogen peroxide (H2 O2 ), superoxide anion free radical (·O2 - ), hydroxyl radicals (·OH) and 2,2-di(4-tert-octylphenyl)-1-picryl-hydrazyl (DPPH) to reduce oxidative stress and inhibit "bacteria-to-bacteria communication", thus clearing planktonic bacteria and biofilms, accelerating bacterial plasmolysis, reducing bacterial virulence and interfering with membrane transport. After in vivo treatment with hydrogel, nearly all bacteria are eliminated, inflammation is effectively inhibited, and osteogenesis and bone repair are promoted to facilitate recovery from PTO. The work demonstrates the clinical translational potential of the hydrogel in the treatment of drug-resistant bacteria induced PTO.

8.
J Hosp Infect ; 148: 20-29, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38490490

RESUMO

BACKGROUND: The duration of extensively drug-resistant bacteria (XDR) carriage depends on several factors for which the information can be difficult to recover. AIM: To determine whether past screening and clinical results of patients can predict the results of subsequent screening. METHODS: In total, 256 patients were retrospectively included from 10 healthcare centres in France from January 2014 to January 2022. We created a predictive clearance score, ranging from -5 to +7, that included the number of XDR species and the type of resistance detected in the sample, as well as the time from the last positive sample, the number of previous consecutive negative samples, and obtaining at least one negative PCR result in the collection. This score could be used for the upcoming rectal screening of a patient carrying an XDR as soon as the last screening sample was negative. FINDINGS: The negative predictive value was >99% for score ≤0. The median time to achieve XDR clearance was significantly shorter for a score of 0 (443 days (259-705)) than that based on previously published criteria. CONCLUSION: This predictive score shows high performance for the assessment of XDR clearance. Relative to previous guidelines, it could help to lift specific infection prevention and control measures earlier. Nevertheless, the decision should be made according to other factors, such as antimicrobial use and adherence to hand hygiene.

9.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474008

RESUMO

Organic ammonium and phosphonium salts exert excellent antimicrobial effects by interacting lethally with bacterial membranes. Particularly, quaternary ammonium lipids have demonstrated efficiency both as gene vectors and antibacterial agents. Here, aiming at finding new antibacterial devices belonging to both classes, we prepared a water-soluble quaternary ammonium lipid (6) and a phosphonium salt (1) by designing a synthetic path where 1 would be an intermediate to achieve 6. All synthesized compounds were characterized by Fourier-transform infrared spectroscopy and Nuclear Magnetic Resonance. Additionally, potentiometric titrations of NH3+ groups 1 and 6 were performed to further confirm their structure by determining their experimental molecular weight. The antibacterial activities of 1 and 6 were assessed first against a selection of multi-drug-resistant clinical isolates of both Gram-positive and Gram-negative species, observing remarkable antibacterial activity of both compounds against Gram-positive isolates of Enterococcus and Staphylococcus genus. Further investigations on a wider variety of strains of these species confirmed the remarkable antibacterial effects of 1 and 6 (MICs = 4-16 and 4-64 µg/mL, respectively), while 24 h-time-killing experiments carried out with 1 on different S. aureus isolates evidenced a bacteriostatic behavior. Moreover, both compounds 1 and 6, at the lower MIC concentration, did not show significant cytotoxic effects when exposed to HepG2 human hepatic cell lines, paving the way for their potential clinical application.


Assuntos
Compostos de Amônio , Humanos , Compostos de Amônio/farmacologia , Staphylococcus aureus , Compostos de Amônio Quaternário/química , Antibacterianos/farmacologia , Bactérias Gram-Positivas , Bactérias , Cloreto de Sódio/farmacologia , Cloreto de Sódio na Dieta/farmacologia , Lipídeos/farmacologia , Testes de Sensibilidade Microbiana
10.
Adv Healthc Mater ; : e2400318, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408212

RESUMO

Drug-resistant bacterial infection of cutaneous wounds causes great harm to the human body. These infections are characterized by a microenvironment with recalcitrant bacterial infections, persistent oxidative stress, imbalance of immune regulation, and suboptimal angiogenesis. Treatment strategies available to date are incapable of handling the healing dynamics of infected wounds. A Schiff base and borate ester cross-linked hydrogel, based on phenylboronic acid-grafted chitosan (CS-PBA), dibenzaldehyde-grafted poly(ethylene glycol), and tannic acid (TA), is fabricated in the present study. Customized phenylboronic acid-modified zinc oxide nanoparticles (ZnO) are embedded in the hydrogel prior to gelation. The CPP@ZnO-P-TA hydrogel effectively eliminates methicillin-resistant Staphylococcus aureus (MRSA) due to the pH-responsive release of Zn2+ and TA. Killing is achieved via membrane damage, adenosine triphosphate reduction, leakage of intracellular components, and hydrolysis of bacterial o-nitrophenyl-ß-d-galactopyranoside. The CPP@ZnO-P-TA hydrogel is capable of scavenging reactive oxygen and nitrogen species, alleviating oxidative stress, and stimulating M2 polarization of macrophages. The released Zn2+ and TA also induce neovascularization via the PI3K/Akt pathway. The CPP@ZnO-P-TA hydrogel improves tissue regeneration in vivo by alleviating inflammatory responses, stimulating angiogenesis, and facilitating collagen deposition. These findings suggest that this versatile hydrogel possesses therapeutic potential for the treatment of MRSA-infected cutaneous wounds.

11.
Adv Healthc Mater ; : e2400049, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38416676

RESUMO

Wound healing and infection remain significant challenges due to the ineffectiveness against multidrug-resistant (MDR) bacteria and the complex oxidative wound microenvironments. To address these issues, thymoquinone-reinforced injectable and thermosensitive TQ@PEG-PAF-Cur hydrogels with dual functions of microenvironment reshaping and photodynamic therapy are developed. The hydrogel comprises natural compound thymoquinone (TQ) and poly (ethylene glycol)-block-poly (alanine-co-phenyl alanine) copolymers (PEG-PAF) conjugated with natural photosensitizer curcumin (Cur). The incorporation of TQ and Cur reduces the sol-to-gel transition temperature of TQ@PEG-PAF-Cur to 30°C, compared to PEG-PAF hydrogel (37°C), due to the formation of strong hydrogen bonding, matching the wound microenvironment temperature. Under blue light excitation, TQ@PEG-PAF-Cur generates significant amounts of reactive oxygen species such as H2 O2 , 1O2 , and ·OH, exhibiting rapid and efficient bactericidal capacities against methicillin-resistant Staphylococcus aureus and broad spectrum ß-lactamases Escherichia coli via photodynamic therapy (PDT). Additionally, Cur effectively inhibits the expressions of proinflammatory cytokines in skin tissue-forming cells. As a result, the composite hydrogel can rapidly transform into a gel to cover the wound, reshape the wound microenvironment, and accelerate wound healing in vivo. This collaborative antibacterial strategy provides valuable insights to guide the development of multifunctional materials for efficient wound healing.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38421273

RESUMO

The rapid development of nanotechnology has led to the use of silver nanoparticles (Ag-NPs) in various biomedical fields. However, the effect of Ag-NPs on human mesenchymal stem cells (hMSCs) is not fully understood. Moreover, too frequent an exposure to products containing nanosilver in sublethal amounts raises widespread concerns that it will lead to the development of silver-resistant microorganisms. Therefore, this study aimed to evaluate the mechanism of action of Ag-NPs on hMSCs by analyzing the cellular uptake of Ag-NPs by the cells and its effect on their viability and to assess antimicrobial activity of Ag-NPs against emerging bacterial strains, including multidrug-resistant pathogens. For metabolic activity and viability evaluation, hMSCs were incubated with different concentrations of Ag-NPs (14 µg/mL, 7 µg/mL, and 3.5 µg/mL) for 10 min., 1 h and 24 h and subsequently analyzed for their viability by live-dead staining and metabolic activity by the MTS assay. The effect of Ag-NPs on bacterial pathogens was studied by determining their minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). In conclusion, it was observed that exposure of hMSCs to Ag-NPs of size <10 nm has no cytotoxic effect on the metabolic activity of the cells at the concentration of 3.5 µg/mL, with minimal cytotoxic effect being observed at the concentration of 14 µg/mL after 24 h of incubation. Our findings also confirmed that Ag-NPs at the concentration of 4 µg/mL are effective broad-spectrum bactericidal agents, regardless of the antibiotic-resistance mechanism present in bacteria.


Assuntos
Células-Tronco Mesenquimais , Nanopartículas Metálicas , Humanos , Prata/farmacologia , Bactérias , Antibacterianos/farmacologia , Fatores Imunológicos
13.
Eur J Med Chem ; 268: 116221, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382392

RESUMO

The formation of biofilm is one of the important factors for bacteria to develop drug-resistant. A series of halogenated-pyrroles or pyrazoles containing thiazole groups as antibacterial agents were designed and synthesized to target biofilms. Among them, compound 8c showed antibacterial activity against various Gram-positive bacteria, particularly against vancomycin-resistant Enterococcus faecalis (MIC ≤0.125 µg/mL). Additionally, this compound significantly inhibited biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa at sub-MIC doses. Furthermore, compound 8c exhibited significantly lower mammalian cell toxicity compared to pyrrolomycin C and its hepatic microsomal metabolic stability in various species was also evaluated. Further experiment on the infection model of Galleria mellonella proved that the compound was effective in vivo.

14.
Microbiol Spectr ; 12(3): e0360223, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315121

RESUMO

Horizontal gene transfer (HGT) is the process through which genetic information is transferred between different genomes and that played a crucial role in bacterial evolution. HGT can enable bacteria to rapidly acquire antibiotic resistance and bacteria that have acquired resistance is spreading within the microbiome. Conventional methods of characterizing HGT patterns include short-read metagenomic sequencing (short-reads mNGS), long-read sequencing, and single-cell sequencing. These approaches present several limitations, such as short-read fragments, high amounts of input DNA, and sequencing costs, respectively. Here, we attempt to circumvent present limitations to detect HGT by developing a metagenomics co-barcode sequencing workflow (MECOS) and applying it to the human and mouse gut microbiomes. In addition to that, we have over 10-fold increased contig length compared to short-reads mNGS; we also obtained exceeding 30 million paired reads with co-barcode information. Applying the novel bioinformatic pipeline, we integrated this co-barcoding information and the context information from long reads, and observed over 50-fold HGT events after we corrected the potential wrong HGT events. Specifically, we detected approximately 3,000 HGT blocks in individual samples, encompassing ~6,000 genes and ~100 taxonomic groups, including loci conferring tetracycline resistance through ribosomal protection. MECOS provides a valuable tool for investigating HGT and advance our understanding on the evolution of natural microbial communities within hosts.IMPORTANCEIn this study, to better identify horizontal gene transfer (HGT) in individual samples, we introduce a new co-barcoding sequencing system called metagenomics co-barcoding sequencing (MECOS), which has three significant improvements: (i) long DNA fragment extraction, (ii) a special transposome insertion, (iii) hybridization of DNA to barcode beads, and (4) an integrated bioinformatic pipeline. Using our approach, we have over 10-fold increased contig length compared to short-reads mNGS, and observed over 50-fold HGT events after we corrected the potential wrong HGT events. Our results indicate the presence of approximately 3,000 HGT blocks, involving roughly 6,000 genes and 100 taxonomic groups in individual samples. Notably, these HGT events are predominantly enriched in genes that confer tetracycline resistance via ribosomal protection. MECOS is a useful tool for investigating HGT and the evolution of natural microbial communities within hosts, thereby advancing our understanding of microbial ecology and evolution.


Assuntos
Transferência Genética Horizontal , Metagenômica , Animais , Humanos , Camundongos , Metagenômica/métodos , Biologia Computacional/métodos , Metagenoma , Bactérias/genética , DNA
15.
J Chemother ; : 1-9, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38339845

RESUMO

Nosocomial infections with drug resistant bacteria impact morbidity and mortality, length of therapy and stay and the overall cost of treatment. Key pathogens with ventilator associated pneumonia may be drug-susceptible or multi-drug resistant and inhaled amikacin has been investigated as an adjunctive therapy option. High pulmonary drug concentrations (epithelial lining fluid [ELF]) along with minimal systemic toxicity is seen as an advantage to inhaled formulations. In vitro killing of bacteria using clinically relevant drug concentrations provide insight on bug-drug interactions. The aim of this study was to measure killing of clinical isolates of Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus and methicillin-susceptible S. aureus using the minimum inhibitory concentration (MIC), mutant prevention concentration (MPC) and median (976 µg/ml) ELF drug concentration for amikacin. Overall killing took longer at the MIC drug concentration and was inconsistent amongst the pathogens tested with the percentage of bacteria killed following 180 min of drug exposure ranging from growth in the presence of the drug to 95% kill. At the MPC drug concentrations, killing ranged from 55-88% for all pathogens following 30 min of drug exposure and increased to 99-100% following 180 min of drug exposure. At the ELF amikacin tested, killing was 81-100% following 20 min and 94-100% by 30 min of drug exposure. Rapid killing against MDR respiratory pathogens by amikacin ELF drug concentrations is encouraging.

16.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396777

RESUMO

The rising prevalence of drug-resistant bacteria underscores the need to search for innovative and nature-based solutions. One of the approaches may be the use of plants that constitute a rich source of miscellaneous compounds with a wide range of biological properties. This review explores the antimicrobial activity of seven bioactives and their possible molecular mechanisms of action. Special attention was focused on the antibacterial properties of berberine, catechin, chelerythrine, cinnamaldehyde, ellagic acid, proanthocyanidin, and sanguinarine against Staphylococcus aureus, Enterococcus spp., Klebsiella pneumoniae, Acinetobacter baumannii, Escherichia coli, Serratia marcescens and Pseudomonas aeruginosa. The growing interest in novel therapeutic strategies based on new plant-derived formulations was confirmed by the growing number of articles. Natural products are one of the most promising and intensively examined agents to combat the consequences of the overuse and misuse of classical antibiotics.


Assuntos
Antibacterianos , Infecção dos Ferimentos , Humanos , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Staphylococcus aureus , Escherichia coli , Serratia marcescens
17.
ACS Infect Dis ; 10(2): 350-370, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38232301

RESUMO

The emergence of multi-drug-resistant bacteria is threatening to human health and life around the world. In particular, methicillin-resistant Staphylococcus aureus (MRSA) causes fatal injuries to human beings and serious economic losses to animal husbandry due to its easy transmission and difficult treatment. Currently, the development of novel, highly effective, and low-toxicity antimicrobials is important to combat MRSA infections. Thiazole-containing compounds with good biological activity are widely used in clinical practice, and appropriate structural modifications make it possible to develop new antimicrobials. Here, we review thiazole-containing compounds and their antibacterial effects against MRSA reported in the past two decades and discuss their structure-activity relationships as well as the corresponding antimicrobial mechanisms. Some thiazole-containing compounds exhibit potent antibacterial efficacy in vitro and in vivo after appropriate structural modifications and could be used as antibacterial candidates. This Review provides insights into the development of thiazole-containing compounds as antimicrobials to combat MRSA infections.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Animais , Humanos , Tiazóis/farmacologia , Tiazóis/química , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia
18.
World J Microbiol Biotechnol ; 40(2): 72, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38233674

RESUMO

The emergence of multi drug resistant bacterial infections has caused a critical problem with implication on hospitalization and mortality rates. This systematic review aims to review the combined antimicrobial effect of nanoparticles attached to the traditionally used antibiotics, to overcome the antibiotic resistance crisis. In this systematic search we focused on preclinical studies that have used animal models, to test and evaluate the effect of nanomaterials added to antibiotics against gram negative bacteria with carbapenem resistance. Where, this newly formed structure has led to significant decrease in bacterial load in animal model serum. Furthermore, by evaluating nanomaterial cytotoxicity and inflammatory markers, promising results were established, where low toxicity indices were presented, supporting the ability of this new pathway to be used as an alternative to abused antibiotics. Our research collected the various data and showed encouraging preclinical one for using nanomaterials with antibiotics. This undeniable route should be considered, due to its ability to contribute to the treatment of multi drug resistant bacterial infections. These findings provide base for future studies and reinforce the need for more evaluation and testing on the safety of nanomaterials against bacterial infections.


Assuntos
Infecções Bacterianas , Nanoestruturas , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Infecções Bacterianas/tratamento farmacológico , Carbapenêmicos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Bactérias Gram-Negativas , Nanoestruturas/efeitos adversos
19.
Antibiotics (Basel) ; 13(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38247632

RESUMO

The increasing prevalence of antimicrobial resistance and the limited availability of new antimicrobial agents have created an urgent need for new approaches to combat these issues. One such approach involves reevaluating the use of old antibiotics to ensure their appropriate usage and maximize their effectiveness, as older antibiotics could help alleviate the burden on newer agents. An example of such an antibiotic is chloramphenicol (CHL), which is rarely used due to its hematological toxicity. In the current study, we employed a previously published transposon mutant library in MG1655/pTF2::blaCTX-M-1, containing over 315,000 unique transposon insertions, to identify the genetic factors that play an important role during growth in the presence of CHL. The list of conditionally essential genes, collectively referred to as the secondary resistome (SR), included 67 genes. To validate our findings, we conducted gene knockout experiments on six genes: arcA, hfq, acrZ, cls, mdfA, and nlpI. Deleting these genes resulted in increased susceptibility to CHL as demonstrated by MIC estimations and growth experiments, suggesting that targeting the products encoded from these genes may reduce the dose of CHL needed for treatment and hence reduce the toxicity associated with CHL treatment. Thus, the gene products are indicated as targets for antibiotic adjuvants to favor the use of CHL in modern medicine.

20.
Int J Pharm ; 652: 123827, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38253268

RESUMO

This study set out to formulate antibacterial and antioxidant gelatin boosted by cinnamaldehyde for combating multi-drug resistant bacteria previously obtained from chronic wounds. Towards this end, gelatin amine groups were conjugated with carbonyl groups of cinnamaldehyde, producing cinnamyl-gelatin Schiff bases. The physicochemical attributes of cinnamyl-gelatin Schiff bases were probed concerning alterations in chemical structures and microstructures compared to native gelatin. Besides, cinnamyl-gelatin Schiff bases exhibited higher thermal stability than gelatin, with a diminishing in solubility due to increases in hydrophobicity features. Interestingly, cinnamyl-gelatin derivatives exerted antibacterial activities versus multi-drug resistant Gram-negative and Gram-positive bacteria, showing maximum growth inhibition at the highest concentration of cinnamaldehyde incorporated into gelatin. The scavenging activities of gelatin against DPPH and ABTS•+ were promoted in cinnamyl-gelatin derivatives from 11.93 ± 0.6 % to 49.9 ± 2.5 % and 12.54 ± 0.63 % to 49.9 ± 3.12 %, respectively. Remarkably, cinnamyl-gelatin derivatives induced the proliferation of fibroblast cells, implying their prospective applications in tissue engineering. Molecular docking and pharmacokinetic investigations disclosed the potential antibacterial mechanisms of cinnamyl-gelatin derivatives alongside their biopharmaceutical applications. Altogether, these findings suggest that cinnamyl-gelatin derivatives could be utilized to tailor antibacterial-free antibiotics and antioxidant wound dressings against virulent bacteria to promote chronic wound recovery.


Assuntos
Acroleína/análogos & derivados , Antioxidantes , Gelatina , Gelatina/química , Simulação de Acoplamento Molecular , Antioxidantes/farmacologia , Antioxidantes/química , Bases de Schiff/farmacologia , Bases de Schiff/química , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...